Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Soc Sci Med ; 348: 116837, 2024 May.
Article in English | MEDLINE | ID: mdl-38579628

ABSTRACT

Thirty years after the 1994 genocide against the Tutsi in Rwanda, children of survivors are being increasingly documented to be at higher risk compared to their peers for adverse mental health outcomes. However, no studies in Rwanda have empirically explored family psychosocial factors underlying this intergenerational transmission of trauma. We investigated family psychosocial factors that could underlie this transmission in 251 adult Rwandan children of survivors (mean age = 23.31, SD = 2.40; 50.2% female) who completed a cross-sectional online survey. For participants with survivor mothers (n = 187), we found that both offspring-reported maternal trauma exposure and maternal PTSD were indirectly associated with children's PTSD via maternal trauma communication (specifically, nonverbal and guilt-inducing communication), and that maternal PTSD was indirectly associated with children's PTSD, anxiety, and depression symptoms through family communication styles. For participants with survivor fathers (n = 170), we found that paternal PTSD symptoms were indirectly associated with children's anxiety and depression symptoms via paternal parenting styles (specifically, abusive and indifferent parenting). Although replication is needed in longitudinal research with parent-child dyads, these results reaffirm the importance of looking at mass trauma in a family context and suggest that intergenerational trauma interventions should focus on addressing family communication, trauma communication, and parenting.


Subject(s)
Adult Children , Genocide , Stress Disorders, Post-Traumatic , Survivors , Humans , Rwanda/epidemiology , Female , Male , Genocide/psychology , Adult , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/epidemiology , Cross-Sectional Studies , Survivors/psychology , Adult Children/psychology , Young Adult , Intergenerational Relations , Surveys and Questionnaires , Parenting/psychology , Depression/psychology
2.
Article in English | MEDLINE | ID: mdl-38650309

ABSTRACT

Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.

3.
Res Sq ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38410438

ABSTRACT

Background: Incorporating genomic data into risk prediction has become an increasingly useful approach for rapid identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who do not. Methods: Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 controls) comprised of 5 diverse cohorts with available blood-derived DNA methylation (DNAm) measured on the Illumina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood trauma exposure and DNAm variables; the second, methylation-only risk score (MoRS) was based solely on DNAm data; the third, methylation-only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre-deployment data was also assessed. External validation of risk scores was conducted in four independent cohorts. Results: The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1-score (89%) in classifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoRSAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p-0.003), but not in the remaining three cohorts. Pre-deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) displayed a significant (p < 0.001) predictive power for post-deployment PTSD. Conclusion: Results, especially those from the eMRS, reinforce earlier findings that methylation and trauma are interconnected and can be leveraged to increase the correct classification of those with vs. without PTSD. Moreover, our models can potentially be a valuable tool in predicting the future risk of developing PTSD. As more data become available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their accuracy in predicting the condition and, relatedly, improve their performance in independent cohorts.

4.
Nat Genet ; 56(2): 222-233, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177345

ABSTRACT

Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD cases and 902,757 controls to previously reported data. This analysis used a range of measures to define MD and included samples of African (36% of effective sample size), East Asian (26%) and South Asian (6%) ancestry and Hispanic/Latin American participants (32%). The multi-ancestry GWAS identified 53 significantly associated novel loci. For loci from GWAS in European ancestry samples, fewer than expected were transferable to other ancestry groups. Fine mapping benefited from additional sample diversity. A transcriptome-wide association study identified 205 significantly associated novel genes. These findings suggest that, for MD, increasing ancestral and global diversity in genetic studies may be particularly important to ensure discovery of core genes and inform about transferability of findings.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease , Depressive Disorder, Major/genetics , Depression , Chromosome Mapping , Polymorphism, Single Nucleotide/genetics
5.
Soc Sci Med ; 340: 116440, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039767

ABSTRACT

The link between childhood adversity and adulthood depression is well-established; however, the underlying mechanisms are still being explored. Recent research suggests biological age may mediate the relationship between childhood adversity and depression in later life. This study examines if biological age mediates the relationship between childhood adversity and depression symptoms using an expanded set of biological age measures in an urban population-based cohort. Data from waves 1-3 of the Detroit Neighborhood Health Study (DNHS) were used in this analysis. Questions about abuse during childhood were coded to form a childhood adversity score similar to the Adverse Childhood Experience measure. Multiple dimensions of biological age, defined as latent variables, were considered, including systemic biological age (GrimAge, PhenoAge), epigenetic age (Horvath, SkinBlood), and immune age (cytomegalovirus, herpes simplex virus type 1, C-reactive protein, interleukin-6). Depression symptoms, modeled as a latent variable, were captured through the Patient Health Questionnaire-9 (PHQ-9). Models were adjusted for age, gender, race, parent education, and past depressive symptoms. Total and direct effects of childhood adversity on depression symptoms and indirect effects mediated by biological age were estimated. For total and direct effects, we observed a dose-dependent relationship between cumulative childhood adversity and depression symptoms, with emotional abuse being particularly influential. However, contrary to prior studies, in this sample, we found few direct effects of childhood adversity on biological age or biological age on depression symptoms and no evidence of mediation through the measures of biological age considered in this study. Further research is needed to understand how childhood maltreatment experiences are embodied to influence health and wellness.


Subject(s)
Adverse Childhood Experiences , Child Abuse , Humans , Child , Depression/epidemiology , Depression/etiology , Depression/psychology , Child Abuse/psychology , C-Reactive Protein , Aging
6.
Int J Equity Health ; 22(1): 182, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37679827

ABSTRACT

BACKGROUND: Historical trauma experienced by Indigenous peoples of North America is correlated with health disparities and is hypothesized to be associated with DNA methylation. Massive group traumas such as genocide, loss of land and foodways, and forced conversion to Western lifeways may be embodied and affect individuals, families, communities, cultures, and health. This study approaches research with Alaska Native people using a community-engaged approach designed to create mutually-beneficial partnerships, including intentional relationship development, capacity building, and sample and data care. METHODS: A total of 117 Alaska Native individuals from two regions of Alaska joined the research study. Participants completed surveys on cultural identification, historical trauma (historical loss scale and historical loss associated symptoms scale), and general wellbeing. Participants provided a blood sample which was used to assess DNA methylation with the Illumina Infinium MethylationEPIC array. RESULTS: We report an association between historical loss associated symptoms and DNA methylation at five CpG sites, evidencing the embodiment of historical trauma. We further report an association between cultural identification and general wellbeing, complementing evidence from oral narratives and additional studies that multiple aspects of cultural connection may buffer the effects of and/or aid in the healing process from historical trauma. CONCLUSION: A community-engaged approach emphasizes balanced partnerships between communities and researchers. Here, this approach helps better understand embodiment of historical trauma in Alaska Native peoples. This analysis reveals links between the historical trauma response and DNA methylation. Indigenous communities have been stigmatized for public health issues instead caused by systemic inequalities, social disparities, and discrimination, and we argue that the social determinants of health model in Alaska Native peoples must include the vast impact of historical trauma and ongoing colonial violence.


Subject(s)
Historical Trauma , Humans , Methylation , Alaska/epidemiology , Community Participation , Stakeholder Participation , Indigenous Peoples
7.
Transl Psychiatry ; 13(1): 237, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37391434

ABSTRACT

Observational studies have shown an association between post-traumatic stress disorder (PTSD) and ischemic stroke (IS) but given the susceptibility to confounding it is unclear if these associations represent causal effects. Mendelian randomization (MR) facilitates causal inference that is robust to the influence of confounding. Using two sample MR, we investigated the causal effect of genetic liability to PTSD on IS risk. Ancestry-specific genetic instruments of PTSD and four quantitative sub-phenotypes of PTSD, including hyperarousal, avoidance, re-experiencing, and total symptom severity score (PCL-Total) were obtained from the Million Veteran Programme (MVP) using a threshold P value (P) of <5 × 10-7, clumping distance of 1000 kilobase (Mb) and r2 < 0.01. Genetic association estimates for IS were obtained from the MEGASTROKE consortium (Ncases = 34,217, Ncontrols = 406,111) for European ancestry individuals and from the Consortium of Minority Population Genome-Wide Association Studies of Stroke (COMPASS) (Ncases = 3734, Ncontrols = 18,317) for African ancestry individuals. We used the inverse-variance weighted (IVW) approach as the main analysis and performed MR-Egger and the weighted median methods as pleiotropy-robust sensitivity analyses. In European ancestry individuals, we found evidence of an association between genetic liability to PTSD avoidance, and PCL-Total and increased IS risk (odds ratio (OR)1.04, 95% Confidence Interval (CI) 1.007-1.077, P = 0.017 for avoidance and (OR 1.02, 95% CI 1.010-1.040, P = 7.6 × 10-4 for PCL total). In African ancestry individuals, we found evidence of an association between genetically liability to PCL-Total and reduced IS risk (OR 0.95 (95% CI 0.923-0.991, P = 0.01) and hyperarousal (OR 0.83 (95% CI 0.691-0.991, P = 0.039) but no association was observed for PTSD case-control, avoidance, or re-experiencing. Similar estimates were obtained with MR sensitivity analyses. Our findings suggest that specific sub-phenotypes of PTSD, such as hyperarousal, avoidance, PCL total, may have a causal effect on people of European and African ancestry's risk of IS. This shows that the molecular mechanisms behind the relationship between IS and PTSD may be connected to symptoms of hyperarousal and avoidance. To clarify the precise biological mechanisms involved and how they may vary between populations, more research is required.


Subject(s)
Ischemic Stroke , Stress Disorders, Post-Traumatic , Stroke , Humans , Stress Disorders, Post-Traumatic/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Stroke/epidemiology , Stroke/genetics
8.
bioRxiv ; 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36865247

ABSTRACT

The mRNA-seq data analysis is a powerful technology for inferring information from biological systems of interest. Specifically, the sequenced RNA fragments are aligned with genomic reference sequences, and we count the number of sequence fragments corresponding to each gene for each condition. A gene is identified as differentially expressed (DE) if the difference in its count numbers between conditions is statistically significant. Several statistical analysis methods have been developed to detect DE genes based on RNA-seq data. However, the existing methods could suffer decreasing power to identify DE genes arising from overdispersion and limited sample size. We propose a new differential expression analysis procedure: heterogeneous overdispersion genes testing (DEHOGT) based on heterogeneous overdispersion modeling and a post-hoc inference procedure. DEHOGT integrates sample information from all conditions and provides a more flexible and adaptive overdispersion modeling for the RNA-seq read count. DEHOGT adopts a gene-wise estimation scheme to enhance the detection power of differentially expressed genes. DEHOGT is tested on the synthetic RNA-seq read count data and outperforms two popular existing methods, DESeq and EdgeR, in detecting DE genes. We apply the proposed method to a test dataset using RNAseq data from microglial cells. DEHOGT tends to detect more differently expressed genes potentially related to microglial cells under different stress hormones treatments.

9.
Psychoneuroendocrinology ; 151: 106058, 2023 05.
Article in English | MEDLINE | ID: mdl-36827906

ABSTRACT

Experiencing adversity in childhood and adolescence, including stressful life events (SLEs), may accelerate the pace of development, leading to adverse mental and physical health. However, most research on adverse early experiences and biological aging (BA) in youths relies on cross-sectional designs. In 171 youths followed for approximately 2 years, we examined if SLEs over follow-up predicted rate of change in two BA metrics: epigenetic age and Tanner stage. We also investigated if rate of change in BA was associated with changes in depressive symptoms over time. Youths aged 8-16 years at baseline self-reported Tanner stage and depressive symptoms at baseline and follow-up and provided saliva samples for DNA at both assessments. Horvath epigenetic age estimates were derived from DNA methylation data measured with the Illumina EPIC array. At follow-up, contextual threat interviews were administered to youths and caregivers to assess youths' experiences of past-year SLEs. Interviews were objectively coded by an independent rating team to generate a SLE impact score, reflecting the severity of all SLEs occurring over the prior year. Rate of change in BA metrics was operationalized as change in epigenetic age or Tanner stage as a function of time between assessments. Higher objective SLE impact scores over follow-up were related to a greater rate of change in epigenetic age (ß = 0.21, p = .043). Additionally, among youths with lower-but not higher-Tanner stage at baseline, there was a positive association of SLE impact scores with rate of change in Tanner stage (Baseline Tanner Stage × SLE Impact Score interaction: ß = - 0.21, p = .011). A greater rate of change in epigenetic age was also associated with higher depressive symptom levels at follow-up, adjusting for baseline symptoms (ß = 0.15, p = .043). Associations with epigenetic age were similar, although slightly attenuated, when adjusting for epithelial (buccal) cell proportions. Whereas much research in youths has focused on severe experiences of early adversity, we demonstrate that more commonly experienced SLEs during adolescence may also contribute to accelerated BA. Further research is needed to understand the long-term consequences of changes in BA metrics for health.


Subject(s)
Aging , Stress, Psychological , Adolescent , Humans , Cross-Sectional Studies , DNA Methylation/genetics , Life Change Events
10.
Front Psychiatry ; 13: 892302, 2022.
Article in English | MEDLINE | ID: mdl-36405926

ABSTRACT

Adverse social exposures (ASEs) such as low income, low educational attainment, and childhood/adult trauma exposure are associated with variability in brain region measurements of gray matter volume (GMV), surface area (SA), and cortical thickness (CT). These CNS morphometries are associated with stress-related psychiatric illnesses and represent endophenotypes of stress-related psychiatric illness development. Epigenetic mechanisms, such as 5-methyl-cytosine (5mC), may contribute to the biological embedding of the environment but are understudied and not well understood. How 5mC relates to CNS endophenotypes of psychiatric illness is also unclear. In 97 female, African American, trauma-exposed participants from the Grady Trauma Project, we examined the associations of childhood trauma burden (CTQ), adult trauma burden, low income, and low education with blood-derived 5mC clusters and variability in brain region measurements in the amygdala, hippocampus, and frontal cortex subregions. To elucidate whether peripheral 5mC indexes central nervous system (CNS) endophenotypes of psychiatric illness, we tested whether 73 brain/blood correlated 5mC clusters, defined by networks of correlated 5mC probes measured on Illumina's HumanMethylation Epic Beadchip, mediated the relationship between ASEs and brain measurements. CTQ was negatively associated with rostral middle frontal gyrus (RMFG) SA (ß =-0.231, p = 0.041). Low income and low education were also associated with SA or CT in a number of brain regions. Seven 5mC clusters were associated with CTQ (pmin = 0.002), two with low education (pmin = 0.010), and three with low income (pmin = 0.007). Two clusters fully mediated the relation between CTQ and RMFG SA, accounting for 47 and 35% of variability, respectively. These clusters were enriched for probes falling in DNA regulatory regions, as well as signal transduction and immune signaling gene ontology functions. Methylome-network analyses showed enrichment of macrophage migration (p = 9 × 10-8), T cell receptor complex (p = 6 × 10-6), and chemokine-mediated signaling (p = 7 × 10-4) pathway enrichment in association with CTQ. Our results support prior work highlighting brain region variability associated with ASEs, while informing a peripheral inflammation-based epigenetic mechanism of biological embedding of such exposures. These findings could also serve to potentiate increased investigation of understudied populations at elevated risk for stress-related psychiatric illness development.

11.
Environ Epigenet ; 8(1): dvac018, 2022.
Article in English | MEDLINE | ID: mdl-36330039

ABSTRACT

Although the effects of lead, mercury, manganese, and copper on individual disease processes are well understood, estimating the health effects of long-term exposure to these metals at the low concentrations often observed in the general population is difficult. In addition, the health effects of joint exposure to multiple metals are difficult to estimate. Biological aging refers to the integrative progression of multiple physiologic and molecular changes that make individuals more at risk of disease. Biomarkers of biological aging may be useful to estimate the population-level effects of metal exposure prior to the development of disease in the population. We used data from 290 participants in the Detroit Neighborhood Health Study to estimate the effect of serum lead, mercury, manganese, and copper on three DNA methylation-based biomarkers of biological aging (Horvath Age, PhenoAge, and GrimAge). We used mixed models and Bayesian kernel machine regression and controlled for participant sex, race, ethnicity, cigarette use, income, educational attainment, and block group poverty. We observed consistently positive estimates of the effects between lead and GrimAge acceleration and mercury and PhenoAge acceleration. In contrast, we observed consistently negative associations between manganese and PhenoAge acceleration and mercury and Horvath Age acceleration. We also observed curvilinear relationships between copper and both PhenoAge and GrimAge acceleration. Increasing total exposure to the observed mixture of metals was associated with increased PhenoAge and GrimAge acceleration and decreased Horvath Age acceleration. These findings indicate that an increase in serum lead or mercury from the 25th to 75th percentile is associated with a ∼0.25-year increase in two epigenetic markers of all-cause mortality in a population of adults in Detroit, Michigan. While few of the findings were statistically significant, their consistency and novelty warrant interest.

12.
Epigenomics ; 14(15): 887-895, 2022 08.
Article in English | MEDLINE | ID: mdl-36004496

ABSTRACT

Epigenomic and neurocognitive studies have provided new perspectives on post-traumatic stress disorder and its intergenerational transmission. This article outlines the lessons learned from community engagement (CE) in such research on Rwandan genocide survivors. A strong trauma-related response was observed within the research project-targeted community (genocide survivors) during explanation of the project. CE also revealed privacy concerns, as community members worried that any leakage of genetic/(epi)genomic data could affect not only themselves but also their close relatives. Adopting a culture of CE in the process of research implementation enables the prioritization of targeted community needs and interests. Furthermore, CE has stimulated the development of mental healthcare interventions, which married couples can apply to protect their offspring and thus truly break the cycle of inherited vulnerability.


Studies of how human genes are affected by the environment (epigenomic studies) have provided new perspectives on post-traumatic stress disorder and its intergenerational transmission. This article describes the lessons learned from community engagement (CE) in this type of research in a Rwandan genocide-exposed population. A strong trauma-related response was observed within the community while explaining the project. CE also revealed the participants' privacy concerns related to leakage of genetic/(epi)genomic data that could also affect their close relatives. Adopting a culture of CE in the process of research implementation enables the prioritization of community needs and interests. CE has furthermore stimulated the development of preventive interventions for married couples to protect their offspring and thus truly break the cycle of inherited vulnerability.


Subject(s)
Genocide , Stress Disorders, Post-Traumatic , Epigenomics , Genocide/psychology , Humans , Rwanda , Stress Disorders, Post-Traumatic/genetics , Survivors/psychology
13.
Transl Psychiatry ; 12(1): 200, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551428

ABSTRACT

Post-traumatic stress disorder (PTSD), which frequently occurs in the aftermath of a psychologically traumatic event is characterized by heightened inflammation. People with PTSD also suffer from a number of comorbid clinical and behavioral disorders that are related to chronic inflammation. Thus, understanding the mechanisms of enhanced inflammation in PTSD can provide insights into the relationship between PTSD and associated comorbid disorders. In the current study, we investigated the role of large intervening non-coding RNAs (lincRNAs) in the regulation of inflammation in people diagnosed with PTSD. We observed that WNT ligand, WNT10B, was upregulated in the peripheral blood mononuclear cells (PBMCs) of PTSD patients. This observation was associated with higher H3K4me3 signals around WNT10B promotor in PTSD patients compared to those without PTSD. Increased H3K4me3 resulted from LINC00926, which we found to be upregulated in the PTSD sample, bringing in histone methyltransferase, MLL1, onto WNT10B promotor leading to the introduction of H3K4 trimethylation. The addition of recombinant human WNT10B to pre-activated peripheral blood mononuclear cells (PBMCs) led to increased expression of inflammatory genes such as IFNG and IL17A, suggesting that WNT10B is involved in their upregulation. Together, our data suggested that LINC00926 interacts physically with MLL1 and thereby controls the expression of IFNG and IL17A. This is the first time a long non-coding RNA is shown to regulate the expression of WNT10B and consequently inflammation. This observation has high relevance to our understanding of disease mechanisms of PTSD and comorbidities associated with PTSD.


Subject(s)
RNA, Long Noncoding , Stress Disorders, Post-Traumatic , Gene Expression , Humans , Inflammation/genetics , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Proto-Oncogene Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Stress Disorders, Post-Traumatic/metabolism , Wnt Proteins/genetics
14.
Clin Epigenetics ; 14(1): 48, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35395780

ABSTRACT

BACKGROUND: Altered DNA methylation (DNAm) may be one pathway through which early-life adversity (ELA) contributes to adverse mental and physical health outcomes. This study investigated whether the presence versus absence of ELA experiences reflecting the dimensions of threat and deprivation were associated with epigenome-wide DNAm cross-sectionally and longitudinally in a community-based sample of children and adolescents. METHODS: In 113 youths aged 8-16 years with wide variability in ELA, we examined associations of abuse (physical, sexual, emotional; indicating threat-related experiences) and neglect (emotional, physical; indicating deprivation-related experiences) with DNAm assessed with the Illumina EPIC BeadChip array, with DNA derived from saliva. In cross-sectional epigenome-wide analyses, we investigated associations of lifetime abuse and neglect with DNAm at baseline. In longitudinal epigenome-wide analyses, we examined whether experiencing abuse and neglect over an approximately 2-year follow-up were each associated with change in DNAm from baseline to follow-up. RESULTS: In cross-sectional analyses adjusting for lifetime experience of neglect, lifetime experience of abuse was associated with DNAm for four cytosine-phosphodiester-guanine (CpG) sites (cg20241299: coefficient = 0.023, SE = 0.004; cg08671764: coefficient = 0.018, SE = 0.003; cg27152686: coefficient = - 0.069, SE = 0.012; cg24241897: coefficient = - 0.003, SE = 0.001; FDR < .05). In longitudinal analyses, experiencing neglect over follow-up was associated with an increase in DNAm for one CpG site, adjusting for abuse over follow-up (cg03135983: coefficient = 0.036, SE = 0.006; FDR < .05). CONCLUSIONS: In this study, we identified examples of epigenetic patterns associated with ELA experiences of threat and deprivation that were already observable in youth. We provide novel evidence for change in DNAm over time in relation to ongoing adversity and that experiences reflecting distinct ELA dimensions may be characterized by unique epigenetic patterns.


Subject(s)
Adverse Childhood Experiences , Adolescent , Child , Cross-Sectional Studies , DNA Methylation , Epigenesis, Genetic , Epigenomics , Humans
15.
Psychiatry Res ; 311: 114510, 2022 05.
Article in English | MEDLINE | ID: mdl-35349860

ABSTRACT

The mechanisms through which exposure to differing trauma types become biologically embedded to shape the risk for post-traumatic stress disorder (PTSD) is unclear. DNA methylation (5-mC), particularly in stress-relevant genes, may play a role in this relationship. Here, we conducted path analysis using generalized structural equation modeling to investigate whether blood-derived 5-mC in Nuclear Factor of Activated T Cells 1 (NFATC1) mediates the prospective association between each of five different trauma types ("assaultive violence", "other injury or shocking experience", "learning of trauma to loved one", "sudden, unexpected death of a close friend or relative", and "other") and lifetime PTSD. All five trauma types were significantly associated with reduced methylation at NFATC1 CpG site, cg17057218. Two of the five trauma types were significantly associated with increased methylation at NFATC1 CpG site, cg22324981. Moreover, methylation at cg17057218 significantly mediated 21-32% of the total effect for four of the five trauma types, while methylation at cg22324981 mediated 27-40% of the total effect for two of the five trauma types. These CpG sites were differentially associated with transcription factor binding sites and chromatin state signatures. NFATC1 5-mC may be a potential mechanism in the relationship between some trauma types and prospective risk for PTSD.


Subject(s)
DNA Methylation , NFATC Transcription Factors/genetics , Stress Disorders, Post-Traumatic , Humans , NFI Transcription Factors/genetics , Stress Disorders, Post-Traumatic/genetics , T-Lymphocytes , Violence
16.
Mol Psychiatry ; 27(3): 1720-1728, 2022 03.
Article in English | MEDLINE | ID: mdl-34992238

ABSTRACT

Epigenetic factors modify the effects of environmental factors on biological outcomes. Identification of epigenetic changes that associate with PTSD is therefore a crucial step in deciphering mechanisms of risk and resilience. In this study, our goal is to identify epigenetic signatures associated with PTSD symptom severity (PTSS) and changes in PTSS over time, using whole blood DNA methylation (DNAm) data (MethylationEPIC BeadChip) of military personnel prior to and following combat deployment. A total of 429 subjects (858 samples across 2 time points) from three male military cohorts were included in the analyses. We conducted two different meta-analyses to answer two different scientific questions: one to identify a DNAm profile of PTSS using a random effects model including both time points for each subject, and the other to identify a DNAm profile of change in PTSS conditioned on pre-deployment DNAm. Four CpGs near four genes (F2R, CNPY2, BAIAP2L1, and TBXAS1) and 88 differentially methylated regions (DMRs) were associated with PTSS. Change in PTSS after deployment was associated with 15 DMRs, of those 2 DMRs near OTUD5 and ELF4 were also associated with PTSS. Notably, three PTSS-associated CpGs near F2R, BAIAP2L1 and TBXAS1 also showed nominal evidence of association with change in PTSS. This study, which identifies PTSD-associated changes in genes involved in oxidative stress and immune system, provides novel evidence that epigenetic differences are associated with PTSS.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Adaptor Proteins, Signal Transducing/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenome , Humans , Immune System , Male , Oxidative Stress/genetics , Stress Disorders, Post-Traumatic/genetics
17.
Epigenomics ; 14(1): 11-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34875875

ABSTRACT

Aim & methods: We conducted a pilot epigenome-wide association study of women from Tutsi ethnicity exposed to the genocide while pregnant and their resulting offspring, and a comparison group of women who were pregnant at the time of the genocide but living outside of Rwanda.Results: Fifty-nine leukocyte-derived DNA samples survived quality control: 33 mothers (20 exposed, 13 unexposed) and 26 offspring (16 exposed, 10 unexposed). Twenty-four significant differentially methylated regions (DMRs) were identified in mothers and 16 in children. Conclusions:In utero genocide exposure was associated with CpGs in three of the 24 DMRs: BCOR, PRDM8 and VWDE, with higher DNA methylation in exposed versus unexposed offspring. Of note, BCOR and VWDE show significant correlation between brain and blood DNA methylation within individuals, suggesting these peripherally derived signals of genocide exposure may have relevance to the brain.


Lay abstract The 1994 Rwandan genocide against ethnic Tutsi has been associated with adverse mental health outcomes in survivors decades later, but the molecular mechanisms that contribute to this association remain poorly characterized. Epigenetic mechanisms such as DNA methylation regulate gene function and change in response to life experiences. We identified differentially methylated regions (DMRs) in genocide-exposed versus unexposed mothers and children. In utero genocide exposure was linked with methylation differences in three maternal DMRs, with higher methylation in exposed offspring. Two of three DMRs show correlation between brain and blood methylation within individuals, suggesting that peripherally derived signals of genocide exposure may be relevant to the brain.


Subject(s)
Genocide , Stress Disorders, Post-Traumatic , Child , DNA Methylation , Epigenome , Female , Humans , Leukocytes , Pregnancy , Rwanda , Survivors
18.
J Am Stat Assoc ; 117(540): 1669-1683, 2022.
Article in English | MEDLINE | ID: mdl-36875798

ABSTRACT

DNA methylation (DNAm) has been suggested to play a critical role in post-traumatic stress disorder (PTSD), through mediating the relationship between trauma and PTSD. However, this underlying mechanism of PTSD for African Americans still remains unknown. To fill this gap, in this article, we investigate how DNAm mediates the effects of traumatic experiences on PTSD symptoms in the Detroit Neighborhood Health Study (DNHS) (2008-2013) which involves primarily African Americans adults. To achieve this, we develop a new mediation analysis approach for high-dimensional potential DNAm mediators. A key novelty of our method is that we consider heterogeneity in mediation effects across subpopulations. Specifically, mediators in different subpopulations could have opposite effects on the outcome, and thus could be difficult to identify under a traditional homogeneous model framework. In contrast, the proposed method can estimate heterogeneous mediation effects and identifies subpopulations in which individuals share similar effects. Simulation studies demonstrate that the proposed method outperforms existing methods for both homogeneous and heterogeneous data. We also present our mediation analysis results of a dataset with 125 participants and more than 450,000 CpG sites from the DNHS study. The proposed method finds three subgroups of subjects and identifies DNAm mediators corresponding to genes such as HSP90AA1 and NFATC1 which have been linked to PTSD symptoms in literature. Our finding could be useful in future finer-grained investigation of PTSD mechanism and in the development of new treatments for PTSD.

19.
Clin Epigenetics ; 13(1): 68, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33789736

ABSTRACT

BACKGROUND: Poor family emotional health (FEH) during childhood is prevalent and impactful, and likely confers similar neurodevelopmental risks as other adverse social environments. Pointed FEH study efforts are underdeveloped, and the mechanisms by which poor FEH are biologically embedded are unclear. The current exploratory study examined whether variability in 5-methyl-cytosine (5mC) and fronto-limbic grey matter volume may represent pathways through which FEH may become biologically embedded. RESULTS: In 98 university students aged 18-22 years, retrospective self-reported childhood FEH was associated with right hemisphere hippocampus (b = 10.4, p = 0.005), left hemisphere amygdala (b = 5.3, p = 0.009), and right hemisphere amygdala (b = 5.8, p = 0.016) volumes. After pre-processing and filtering to 5mC probes correlated between saliva and brain, analyses showed that childhood FEH was associated with 49 5mC principal components (module eigengenes; MEs) (prange = 3 × 10-6 to 0.047). Saliva-derived 5mC MEs partially mediated the association between FEH and right hippocampal volume (Burlywood ME indirect effect b = - 111, p = 0.014), and fully mediated the FEH and right amygdala volume relationship (Pink4 ME indirect effect b = - 48, p = 0.026). Modules were enriched with probes falling in genes with immune, central nervous system (CNS), cellular development/differentiation, and metabolic functions. CONCLUSIONS: Findings extend work highlighting neurodevelopmental variability associated with adverse social environment exposure during childhood by specifically implicating poor FEH, while informing a mechanism of biological embedding. FEH-associated epigenetic signatures could function as proxies of altered fronto-limbic grey matter volume associated with poor childhood FEH and inform further investigation into primarily affected tissues such as endocrine, immune, and CNS cell types.


Subject(s)
Chrysenes/analysis , Family Relations/psychology , Gray Matter/physiopathology , Saliva/chemistry , Stress, Psychological/physiopathology , Students/psychology , Adolescent , Adult , Female , Humans , Male , Retrospective Studies , United States , Young Adult
20.
Aging (Albany NY) ; 13(6): 7883-7899, 2021 03 14.
Article in English | MEDLINE | ID: mdl-33714950

ABSTRACT

Living in adverse neighborhood environments has been linked to risk of aging-related diseases and mortality; however, the biological mechanisms explaining this observation remain poorly understood. DNA methylation (DNAm), a proposed mechanism and biomarker of biological aging responsive to environmental stressors, offers promising insight into potential molecular pathways. We examined associations between three neighborhood social environment measures (poverty, quality, and social cohesion) and three epigenetic clocks (Horvath, Hannum, and PhenoAge) using data from the Detroit Neighborhood Health Study (n=158). Using linear regression models, we evaluated associations in the total sample and stratified by sex and social cohesion. Neighborhood quality was associated with accelerated DNAm aging for Horvath age acceleration (ß = 1.8; 95% CI: 0.4, 3.1), Hannum age acceleration (ß = 1.7; 95% CI: 0.4, 3.0), and PhenoAge acceleration (ß = 2.1; 95% CI: 0.4, 3.8). In models stratified on social cohesion, associations of neighborhood poverty and quality with accelerated DNAm aging remained elevated for residents living in neighborhoods with lower social cohesion, but were null for those living in neighborhoods with higher social cohesion. Our study suggests that living in adverse neighborhood environments can speed up epigenetic aging, while positive neighborhood attributes may buffer effects.


Subject(s)
Aging/psychology , Cooperative Behavior , Epigenesis, Genetic/physiology , Residence Characteristics , Social Environment , Adult , Aged , Female , Humans , Male , Middle Aged , Poverty
SELECTION OF CITATIONS
SEARCH DETAIL
...